FOCT 7194-81

Группа С49

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КАРТОФЕЛЬ СВЕЖИЙ

Правила приемки и методы определения качества

Fresh potatoes. Acceptance rules and methods of quality determination

МКС 67.080.20 ОКСТУ 9707, 9709

Дата введения 1982-06-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством сельского хозяйства СССР РАЗРАБОТЧИКИ

А.И.Замотаев, В.П.Толопилов, Н.М.Маханов, А.С.Кузубов, А.М.Рухлядева, Т.Г.Филатова

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 02.06.81 N 2784
 - 3. B3AMEH FOCT 7194-69
 - 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на ссылка	который да	ана Номер пункта
<u>FOCT 195-77</u>		2.7.4.1
<u>ГОСТ 1027-67</u>		2.7.4.1
<u>ГОСТ 1770-74</u>		2.7.3.1; 2.7.4.1
<u>ГОСТ 2874-82</u>		2.7.3.1
<u>ГОСТ 3118-77</u>		2.7.4.1
<u>ГОСТ 4174-77</u>		2.7.3.1
<u>ГОСТ 4204-77</u>		2.7.3.1
<u>ГОСТ 4207-75</u>		2.7.3.1
<u>ГОСТ 6709-72</u>		2.7.3.1; 2.7.4.1
<u>ГОСТ 9147-80</u>		2.7.3.1
<u>FOCT 12026-76</u>		2.7.3.1; 2.7.4.1
<u>FOCT 13646-68</u>		2.7.3.1
<u>FOCT 14919-83</u>		2.7.4.1

<u>FOCT 24104-88</u>	2.7.3.1; 2.7.4.1
<u>FOCT 25336-82</u>	2.7.4.1
<u>FOCT 26927-86</u>	2.6a
<u>ΓΟCT 26930-86</u> - <u>ΓΟCT 26934-86</u>	2.6a
ТУ 6-09-01-744-88	2.7.4.1

- 5. Ограничение срока действия снято Постановлением Госстандарта от 30.03.92 N 340
- 6. ИЗДАНИЕ (июнь 2010 г.) с Изменениями N 1, 2, 3, утвержденными в мае 1988 г., декабре 1990 г., сентябре 1992 г. (ИУС 8-88, 3-91, 12-92)

Настоящий стандарт распространяется на свежий картофель и устанавливает правила приемки и методы определения качества.

1. ПРАВИЛА ПРИЕМКИ

1.1. Картофель принимают партиями. Партией считают любое количество картофеля одного сортотипа, упакованное в тару одного вида и типоразмера или неупакованное, находящееся не более чем в трех автомашинах или тракторных тележках, в одном вагоне, барже, секции хранилища, закроме, траншее или хранилище и сопровождаемое одним документом о качестве и "Сертификатом о содержании токсикантов в продукции растениеводства и соблюдении регламентов применения пестицидов" по форме, утвержденной в установленном порядке.

(Измененная редакция, Изм. N 1, 2).

1.2. В документе о качестве указывают:

номер документа и дату его выдачи;

номер сертификата о содержании токсикантов и дату его выдачи;

наименование и адрес организации-отправителя;

наименование и адрес организации-получателя;

наименование продукции и ее качество;

ботанический сорт или сортотип;

количество упаковочных единиц;

среднюю массу порожней упаковки (тары);

массу брутто и нетто, кг;

дату упаковывания и отгрузки;

номер транспортного средства;

обозначение соответствующего стандарта;

дату последней обработки ядохимикатами, их наименования (при доставке из хозяйств в магазины).

(Измененная редакция, Изм. N 1, 3).

1.3. Для проверки качества картофеля:

отбирают точечные пробы от неупакованного в тару картофеля; составляют выборку от упакованного в тару картофеля.

- 1.4. При приемке картофеля одного сортотипа, поступившего одновременно от одного поставщика в нескольких автомашинах или тракторных тележках, допускается отбор точечных проб проводить от каждой третьей автомашины или тракторной тележки.
- 1.5. От партии неупакованного в тару картофеля число точечных проб должно быть отобрано при погрузке или выгрузке в соответствии с табл.1.

Таблица 1

Масса партии, т	Число точечных проб
До 10 включ.	6
Св. 10 до 20 включ.	15
" 20 " 40 "	21
" 40 " 70 "	24
" 70 " 150 "	30

От партии картофеля массой свыше 150 т на каждые последующие полные или неполные 50 т дополнительно отбирают шесть точечных проб.

1.6. От партии упакованного в мешки или ящики картофеля отбирают выборку в соответствии с табл.2.

Таблица 2

Количество упаковочных единиц картофеля в партии	Количество упаковочных единиц картофеля в выборке		
До 20 включ.	3		
Св. 20 до 50 включ.	6		
" 50 "100 "	9		
" 100 " 150 "	12		

От партии упакованного картофеля свыше 150 упаковочных единиц на каждые последующие полные или неполные 50 упаковочных единиц отбирают по одной упаковочной единице картофеля.

1.7. От партии упакованного в ящичные поддоны картофеля отбирают выборку в соответствии с табл.3.

Таблица 3

Количество ящичных поддонов в партии	Количество ящичных поддонов в выборке
До 10 включ.	2
Св. 10 до 20 включ.	3
" 20 " 50 "	5

От партии упакованного картофеля свыше 50 ящичных поддонов на каждые последующие полные или неполные 25 ящичных поддонов отбирают один ящичный поддон.

- 1.8. От партии картофеля, фасованного в потребительскую тару массой до 3 кг, отбирают не менее трех упаковочных единиц от каждых полных или неполных 100 упаковочных единиц.
- 1.8а. Контроль содержания токсичных элементов, пестицидов и нитратов проводят в установленном порядке.

(Измененная редакция, Изм. N 2).

1.9. При разногласиях по результатам проверки качества картофель повторно отбирают в соответствии с пп.1.5-1.8.

Результаты повторной проверки распространяют на всю партию (см. п.2.6).

1.10. Все количество картофеля, отобранное по пп.1.5-1.8, за исключением разрезанных, загнивших, гнилых, раздавленных клубней, земли и примеси, после проведения анализа присоединяют к исследуемой партии.

1.11. Качество картофеля в поврежденных упаковочных единицах контролируют отдельно и результаты распространяют на картофель в этих упаковочных единицах.

(Введен дополнительно, Изм. N 3).

2. МЕТОДЫ ОПРЕДЕЛЕНИЯ КАЧЕСТВА

2.1. Методы отбора проб

- 2.1.1. Отбор точечных проб в соответствии с п.1.5 проводят из разных слоев насыпи картофеля по высоте (верхнего, среднего и нижнего) через равные расстояния по ширине и длине. От каждого слоя насыпи отбирают равные количества точечных проб.
- 2.1.2. Масса каждой точечной пробы должна быть не менее 3 кг. Все точечные пробы должны быть примерно одной массы.
- 2.1.3. Картофель из мешков, ящиков или ящичных поддонов, отобранных в выборку по пп.1.6, 1.7, высыпают на чистую площадку или брезент. Отбор точечных проб от образовавшейся насыпи проводят по п.2.1.1.

Число точечных проб должно соответствовать количеству отобранных в выборку мешков, ящиков или утроенному количеству ящичных поддонов.

2.1.4. От неупакованного картофеля при выгрузке его из саморазгружающихся транспортных средств непосредственно в бурт точечные пробы отбирают в семи местах образовавшейся насыпи: одну - в центре верхней части бурта, две - в нижней части переднего откоса бурта и по две - в средней части правого и левого откосов бурта.

При выгрузке картофеля из автотранспорта с помощью буртоукладочной машины (БУМа) точечные пробы отбирают перед выгрузкой картофеля из транспортных средств по пп.1.5, 2.1.1.

(Измененная редакция, Изм. N 3).

- 2.1.5. Отбор точечных проб проводят деревянными лопатами или деревянными совками, не допуская нанесения клубням механических повреждений.
- 2.1.6. Точечные пробы, отобранные по пп.2.1.1-2.1.4, или картофель из упаковочных единиц, отобранных по п.1.8, соединяют в объединенную пробу и определяют ее массу.

2.2. Аппаратура и материалы

Для определения качества применяют:

весы чашечные или платформенные с погрешностью взвешивания не более 0,01 кг;

ящики со сплошными стенками и дном;

мешки;

брезент;

лопаты деревянные;

совки деревянные;

ведро или бак;

корзины;

ветошь.

2.3. Метод определения наличия земли и примеси

Сущность метода заключается в определении свободной земли и примеси; земли, прилипшей к клубням; земли и примеси, оставшихся в транспортном средстве или хранилище (в случаях, когда они входят в общую массу партии) после выгрузки картофеля, упакованного в тару, вычисленных в процентах до второго десятичного знака с последующим округлением до первого десятичного знака.

2.3.1. Определение свободной земли и примеси

Объединенную пробу взвешивают и клубни перекладывают на чистую площадку или брезент. Оставшиеся свободную землю и примесь собирают отдельно и взвешивают.

За результат определения принимают содержание свободной земли и примеси, вычисленное в процентах от массы объединенной пробы.

2.3.2. Определение земли, прилипшей к клубням

2.3.2.1. Определение наличия земли, прилипшей к клубням, на чашечных или платформенных весах

прилипшей к клубням, Для определения земли, из разных мест объединенной пробы, из которой выделена свободная земля и примесь, отбирают не менее 5 кг клубней картофеля. Отобранные и взвешенные 5 кг клубней картофеля помещают в бак с водой и отмывают (допускается удалять прилипшую К клубням, вручную ветошью). Чистые землю, выкладывают на противень с решетчатым или сетчатым дном на 2-3 мин для стока воды и взвешивают.

Для вычисления массы чистых клубней из определенной массы отмытого картофеля вычитают массу оставшейся на поверхности клубней воды, условно принятую за 1% от массы отмытых клубней.

Из массы клубней с землей, взятых для анализа, вычитают массу чистых клубней и получают массу прилипшей к клубням земли.

За результат определения принимают содержание земли, прилипшей к клубням, вычисленное в процентах от отобранной массы клубней.

2.3.2.2. Определение наличия земли, прилипшей к клубням, с помощью весовых устройств типа весов Парова проводят в соответствии с инструкциями по эксплуатации прибора.

(Измененная редакция, Изм. N 3).

2.3.3. Определение наличия земли и примеси, оставшихся в транспортном средстве или хранилище (в случаях, когда они входят в общую массу партии) после выгрузки картофеля, упакованного в тару

После выгрузки картофеля оставшиеся в транспортном средстве или хранилище землю и примесь собирают отдельно и взвешивают. За результат определения принимают содержание земли и примеси, вычисленное в процентах от массы всей партии.

2.3.4. За результат определения наличия земли и примеси принимают сумму результатов определений свободной земли и примеси; земли, прилипшей к клубням; земли и примеси, оставшихся в транспортном средстве или хранилище после выгрузки картофеля, упакованного в тару. Полученный результат указывают отдельно от результатов определения качества, т.е. сверх 100% за вычетом допускаемых соответствующими стандартами норм земли.

2.4. Метод определения размера клубней

2.4.1. Клубни всей объединенной пробы, отмытые или очищенные вручную от земли и примеси, взвешивают, осматривают, измеряют наибольший поперечный диаметр с погрешностью ±1 мм и сортируют на фракции:

клубни картофеля размером, соответствующим нормам, установленным стандартами на картофель;

клубни картофеля размером, соответствующим допускаемым стандартами нормам;

клубни картофеля размером, не соответствующим установленным и допускаемым стандартами нормам.

Клубни картофеля каждой фракции взвешивают в отдельности и вычисляют наличие их в процентах от массы анализируемой пробы до второго десятичного знака с последующим округлением до первого десятичного знака.

- 2.5. Методы определения внешнего вида клубней, наличия клубней с нарастаниями, наростами, позеленевших, с легкой морщинистостью и увядших, с механическими повреждениями, поврежденных сельскохозяйственными вредителями, пораженных болезнями
- 2.5.1. Клубни картофеля, соответствующие по размеру установленным и допускаемым стандартами нормам, осматривают и распределяют на:

клубни картофеля без наличия каких-либо повреждений и болезней;

клубни картофеля с повреждениями и болезнями по каждому их виду в отдельности.

- 2.5.2. Внешний вид клубней, клубни с израстаниями, наростами, морщинистостью, позеленевшие, с легкой увядшие, с механическими повреждениями, поврежденные сельскохозяйственными вредителями, пораженные болезнями, определяют внешним осмотром поверхности клубня, а клубни со скрытыми формами болезней (черная ножка, кольцевая и бурая бактериальная гнили, фитофтороз, железистая пятнистость, потемнение мякоти, дупловатость клубней) - осмотром мякоти клубня на продольном разрезе.
- 2.5.3. Для определения наличия клубней картофеля, пораженных скрытыми формами болезней по п.2.5.2, разрезают 50 клубней объединенной пробы и осматривают мякоть на разрезе. При обнаружении хотя бы одной из указанных болезней дополнительно разрезают клубни в количестве не менее 10% от объединенной пробы.
 - 2.5.2, 2.5.3. (Измененная редакция, Изм. N 3).
- 2.5.4. При наличии на одном клубне нескольких видов болезней или повреждений учитывают одно наиболее существенное повреждение или болезнь.
- 2.5.5. Глубину механических повреждений измеряют линейкой в центре повреждения на поперечном разрезе клубня или устанавливают последовательным срезанием картофельным ножом мякоти клубня в местах повреждения.
- 2.5.6. Клубни взвешивают отдельно по каждому виду повреждения или болезни.
- За результат определения принимают содержание клубней с каждым видом повреждения или болезни, вычисленное в процентах от массы анализируемой пробы до второго десятичного знака с последующим округлением до первого десятичного знака.
- 2.6. При проведении повторной проверки (см. п.1.9) учитывают первое определение качества (см. пп.2.3-2.5) и за окончательный результат принимают среднее арифметическое результатов двух определений.
- 2.6а. Содержание токсичных элементов определяют по <u>ГОСТ 26927</u>, <u>ГОСТ 26930-ГОСТ 26934</u>, пестицидов и нитратов методами, утвержденными Минздравом СССР.

(Измененная редакция, Изм. N 2).

2.7. Методы определения крахмала

2.7.1. В здоровом картофеле крахмал определяют с помощью весовых устройств типа весов Парова, в подмороженном, загнившем или гнилом - фотоэлектроколориметрическим антроновым методом или поляриметрическим методом Эверса.

2.7.2. Определение крахмала с помощью весовых устройств типа весов Парова

Сущность метода заключается в определении крахмала в чистых, отмытых от земли клубнях картофеля с помощью весовых устройств типа весов Парова путем взвешивания пробы в воздухе и воде. Определение проводят в соответствии с инструкцией по эксплуатации прибора.

2.7.1, 2.7.2. (Измененная редакция, Изм. N 3).

2.7.2.1. Аппаратура

Для проведения анализа применяют весы Парова любой марки.

2.7.2.2. Проведение анализа

Из разных мест объединенной пробы отбирают 5,00 кг чистых обсушенных клубней или 5,05 кг чистых необсушенных клубней. Допускается использовать отмытый картофель после определения прилипшей к клубням земли (см. п.2.3.2). Картофель помещают в верхнюю корзину и весы уравновешивают, при необходимости один клубень разрезают. После уравновешивания весов с картофелем при закрытом коромысле весов картофель пересыпают в нижнюю корзину, которую затем осторожно опускают в бачок с водой так, чтобы вытесняемая вода стекала ровной струей. После того как вода стечет, весы уравновешивают в соответствии с инструкцией, прилагаемой к весам, и определяют содержание крахмала в картофеле в процентах по шкале весов. При каждом определении следует измерять температуру воды в бачке. Если она выше или ниже 17,5°С (температура калибровки шкалы весов), то в показания содержания крахмала вносят поправку по табл.4.

Таблица 4

Температура воды, °С	Поправка	Температура воды, °С	Поправка	Температура воды, °С	Поправка
	К показаниям прибавить		К показаниям прибавить		От показаний отнять
7	0,27	13	0,15	18	0,02
8	0,26	14	0,12	19	0,08
9	0,25	15	0,09	20	0,08
10	0,23	16	0,06	21	0,12
11	0,20	17	0,02		
12	0,17				

За результат определения принимают показание шкалы весов Парова с учетом поправки на температуру воды.

2.7.3. Определение крахмала в подмороженном, загнившем или гнилом картофеле фотоэлектроколориметрическим антроновым методом

Сущность метода заключается в гидролизе крахмала разбавленной серной кислотой до глюкозы и фотоэлектроколориметрическом определении интенсивности окраски раствора голубовато-зеленого комплексного соединения антрона с глюкозой с последующим количественным пересчетом на крахмал.

2.7.3.1. Аппаратура, материалы и реактивы

Для проведения анализа применяют:

фотоэлектроколориметры различных марок со светофильтрами, имеющими максимум светопропускания при λ =610 нм с отклонениями не более ±12 нм;

весы лабораторные общего назначения по ГОСТ 24104* с погрешностью взвешивания не более 0,01 кг;

* С 1 июля 2002 г. введен в действие <u>ГОСТ 24104-2001</u>. (На территории Российской Федерации действует <u>ГОСТ Р 53228-2008</u>)

весы аналитические с погрешностью взвешивания не более 0,0002 г; мясорубку;

баню водяную;

электроплитку;

штатив Рейшауэра;

секундомер;

колбы мерные вместимостью 100, 200, 250, 1000 см 3 по <u>ГОСТ 1770</u>; пробирки с пришлифованными пробками по <u>ГОСТ 25336</u>;

бюретки со стеклянными кранами вместимостью 20 см³ с ценой деления шкалы 0,1 см³ по НТД;

пипетки вместимостью 10 см³ градуированные с ценой деления шкалы 0,1 см³ по НТД;

термометры стеклянные ртутные по ГОСТ 13646;

чашку фарфоровую по ГОСТ 9147;

корзины;

бачок;

бумагу фильтровальную лабораторную по ГОСТ 12026;

воду дистиллированную по ГОСТ 6709;

воду питьевую по ГОСТ 2874*;

цинк сернокислый 7-водный по <u>ГОСТ 4174</u>; калий железистосинеродистый 3-водный по <u>ГОСТ 4207</u>.

2.7.3, 2.7.3.1. (Измененная редакция, Изм. N 3).

2.7.3.1.1. Приготовление 0,4 %-ного раствора серной кислоты

 $2,4\,$ см $^3\,$ серной кислоты помещают в колбу вместимостью $1000\,$ см $^3\,$ и доливают до метки дистиллированной водой.

2.7.3.1.2. Приготовление 30 %-ного раствора сернокислого цинка

^{*} На территории Российской Федерации действует <u>ГОСТ Р 51232-98</u>. антрон х.ч., с температурой плавления 153-154°C; кислоту серную по <u>ГОСТ 4204</u>, выдерживающую пробу Саваля (плотность 1835 кг/м³);

30 г сернокислого цинка помещают в колбу вместимостью 100 см³ и доливают до метки дистиллированной водой.

2.7.3.1.3. Приготовление 15 %-ного раствора железистосинеродистого калия

15 г железистосинеродистого калия помещают в колбу вместимостью 100 см³ и доливают до метки дистиллированной водой.

2.7.3.1.4. Приготовление антрона

0,9175 г х.ч. антрона помещают в колбу вместимостью 250 см³, доливают 100-150 см³ серной кислоты и перемешивают до полного растворения антрона. Объем колбы доводят серной кислотой до метки и в течение 4 ч выдерживают при температуре 18-20°С в темном месте и вновь перемешивают. Хранят антроновый реактив при температуре 6-8°С в темном месте не более 12-15 сут.

(Измененная редакция, Изм. N 3).

2.7.3.2. Подготовка к анализу

2.7.3.2.1. Определение коэффициента экстинции

фотоэлектроколориметра определяют коэффициент каждого экстинции, который используют при вычислении процента содержания крахмала в клубнях. Для этого готовят 0,1%-ный раствор глюкозы, затем берут 3, 5, 7 см³ приготовленного раствора глюкозы и каждый в отдельности помещают в колбы вместимостью 100 см³ и доливают в каждую колбу дистиллированную воду до метки. С приготовленными разбавленными проводят 10-12 параллельных растворами глюкозы определений реактивом и определяют оптическую плотность антроновым разбавленного раствора. По показателям значения оптической плотности каждого раствора с определенной концентрацией глюкозы вычисляют среднее значение оптической плотности, по которой вычисляют коэффициент экстинции (K_{3KC}) по формуле

$$K_{\text{EMC}} = \frac{K_{\text{EMBOK}}}{D}$$
,

где $K_{\text{глюк}}$ - массовая концентрация глюкозы в испытуемом растворе, мг/100 см 3 :

D - оптическая плотность в испытуемом растворе.

Пример. При колориметрировании раствора, содержащего в 100 см³ 7 мг глюкозы, оптическая плотность составила:

$$D_1 = 0.280$$
; $D_2 = 0.280$; $D_3 = 0.279$.

$$K_1 = \frac{7}{0,280} = 25,00$$
; $K_2 = \frac{7}{0,280} = 25,00$; $K_3 = \frac{7}{0,279} = 25,09$.

$$K_{\rm cp} = \frac{25,00+25,00+25,09}{3} = 25,03$$
.

2.7.3.2.2. Определение коэффициента разведения

Коэффициент разведения ($K_{\mathrm{разв}}$) испытуемого раствора фильтрата вычисляют по формуле

$$K_{\text{pass}} = \frac{V \cdot V_1}{m \cdot V_2}$$
,

гд е V - объем раствора, в котором разведена навеска измельченного картофеля, см 3 ;

 V_1 - объем раствора разбавленного фильтрата, см 3 ;

m - масса навески измельченного картофеля, г;

 V_2 - объем фильтрата, взятый для приготовления испытуемого раствора, см 3 .

2.7.3.2.3. Приготовление навески

Из разных мест объединенной пробы отбирают 5,00 кг чистых обсушенных или 5,05 кг чистых необсушенных клубней картофеля и дважды пропускают их через мясорубку. Допускается использовать картофель после определения прилипшей к клубням земли. Измельченный картофель тщательно перемешивают до получения однородной консистенции и из разных мест при непрерывном перемешивании в фарфоровую чашку отбирают навеску массой 200 г, из которой отбирают в стаканчик навеску массой 5 г для анализа. Взвешивают навеску с погрешностью не более 0,0002 г.

2.7.3.3. Проведение анализа

Навеску массой 5 г переносят в мерную колбу вместимостью 200 см³ и доливают 100 см³ 0,4%-ного раствора серной кислоты и колбу с содержимым помещают в кипящую баню на 15 мин. Колбу первые 5 мин вращают круговыми движениями для равномерного протекания клейстеризации крахмала и во избежание образования комков в растворе.

Содержимое колбы охлаждают до 20°С и проводят осаждение белков добавлением 2 см³ 30%-ного раствора сернокислого цинка, перемешивают и приливают 2 см³ 15%-ного раствора железистосинеродистого калия. Объем колбы доводят до метки дистиллированной водой, перемешивают и фильтруют. Фильтрат используют для проведения антроновой реакции для определения оптической плотности полученного раствора.

При определении оптической плотности в испытуемом растворе содержание углеводов должно быть не более 6-7 мг/100 см³, для чего фильтрат разбавляют дистиллированной водой. Берут 2 см³ полученного фильтрата и помещают в колбу вместимостью 100 см³, приливают дистиллированную воду до метки. С разбавленным фильтратом проводят антроновую реакцию.

В пробирку с пришлифованной пробкой вместимостью 20 см³ с помощью бюретки со стеклянным краном приливают 5 см³ антронового реактива и осторожно приливают 2,5 см³ разбавленного фильтрата, чтобы жидкости не смешались и образовалось два слоя.

Параллельно готовят контрольный раствор. Для этого в другую такую же пробирку наливают 5 см³ антронового реактива и доливают 2,5 см³ дистиллированной воды.

Обе пробирки закрывают пробками и энергично встряхивают в течение 10 с. При встряхивании необходимо пробирку держать в руке так, чтобы большой палец руки находился на пробке пробирки.

После встряхивания пробирки ставят в штатив Рейшауэра и погружают в водяную бурно кипящую баню на 6 мин. По истечении этого времени штатив с пробирками вынимают из кипящей бани, помещают под струю проточной холодной воды и охлаждают жидкость до 20°C.

В результате антроновой реакции раствор разбавленного фильтрата приобретает сине-зеленую окраску, а контрольный - зеленовато-желтую окраску.

Для определения оптической плотности испытуемых растворов используют кюветы с расстоянием между гранями 5 мм. Перед наполнением кюветы испытуемым раствором ее ополаскивают этим раствором, а внешние стенки обмывают струей воды из промывалки и вытирают насухо фильтровальной бумагой. Наполняют кювету раствором так, чтобы уровень жидкости не доходил до краев на 5 мм. В таком же порядке наливают в кювету контрольный раствор и проводят определение оптической плотности на

фотоэлектроколориметре. Колориметрирование проводят в соответствии с инструкцией по эксплуатации, прилагаемой к каждому фотоэлектроколориметру.

(Измененная редакция, Изм. N 3).

2.7.3.4. Обработка результатов

Массовую долю крахмала в клубнях картофеля (X) в процентах вычисляют по формуле

$$X = \frac{K_{3KC} \cdot D \cdot K_{pass} \cdot 0.9}{1000}$$
,

где $K_{\mathfrak{IRC}}$ - коэффициент экстинции, найденный экспериментальным путем для каждого фотоэлектроколориметра;

 ${\it D}$ - оптическая плотность испытуемого раствора фильтрата после прохождения антроновой реакции, определенная на фотоэлектроколориметре;

 $K_{
m pass}$ - коэффициент разведения испытуемого раствора фильтрата;

0,9 - коэффициент перевода глюкозы в крахмал.

Вычисление производят до второго десятичного знака с последующим округлением до первого десятичного знака.

За результат анализа принимают среднее арифметическое результатов двух определений, допускаемое расхождение между которыми не должно превышать 0,5%.

Если расхождение между результатами двух параллельных определений превышает 0,5%, проводят третье определение и за окончательный результат принимают среднее арифметическое результатов двух наиболее близких определений в пределах допускаемых расхождений.

Пример. 5 г измельченного картофеля помещают в мерную колбу вместимостью 200 см³. Приливают 100 см³ 4%-ного раствора серной кислоты для гидролиза крахмала. Опускают колбу в кипящую баню на 15 мин, затем охлаждают до 20°C и осаждают белки добавлением 2 см³ 30%-ного 2 см3 15%-ного И раствора сернокислого цинка железистосинеродистого калия и доливают до метки дистиллированную воду. После этого содержимое колбы фильтруют. Берут 2 см³ фильтрата, помещают в мерную колбу вместимостью 100 см³ и доливают до метки дистиллированную воду. В данном случае коэффициент разведения будет равен

$$K_{\text{разв}} = \frac{200 \cdot 100}{5 \cdot 2} = 2000$$

С раствором разбавленного фильтрата проводят антроновую реакцию и с помощью фотоэлектроколориметра определяют значение оптической плотности полученного раствора фильтрата. Установили, что оптическая плотность (D) равна 0,400. Коэффициент экстинции определяют в начале работы на фотоэлектроколориметре и затем проверяют 1-2 раза в году.

Установили, что коэффициент экстинции ($K_{\tt 3KC}$) равен 25,03.

Содержание крахмала (X) в процентах вычисляют по формуле

$$X = \frac{K_{\text{3EC}} \cdot D \cdot K_{\text{pass}} \cdot 0.9}{1000} = \frac{25,03 \cdot 0.400 \cdot 2000 \cdot 0.9}{1000} = 18 \%.$$

2.7.4. Определение крахмала в подмороженном, загнившем или гнилом картофеле поляриметрическим методом Эверса

Сущность метода заключается в гидролизе крахмала, разбавленного соляной кислотой, поляризации продуктов гидролиза с последующим количественным пересчетом на крахмал.

2.7.4.1. Аппаратура, материалы и реактивы

Для проведения анализа применяют:

поляриметр;

весы лабораторные общего назначения по ГОСТ 24104;

плитку электрическую нагревательную бытовую по ГОСТ 14919;

терку бытовую;

баню водяную;

стаканы стеклянные лабораторные вместимостью 50 см 3 по <u>ГОСТ 25336</u>; воронки стеклянные по <u>ГОСТ 25336</u>;

колбы мерные вместимостью 100 см^3 по <u>ГОСТ 1770</u>;

пипетки вместимостью 50 см³ по НТД;

цилиндры мерные вместимостью 5, 10 см^3 по <u>ГОСТ 1770</u>;

бумагу фильтровальную лабораторную по ГОСТ 12026;

кислоту соляную по <u>ГОСТ 3118</u>, ч.д.а., 1,124%-ный и 25%-ный водные растворы;

цинк сернокислый 7-водный по ГОСТ 4174;

калий железистосинеродистый 3-водный по ГОСТ 4207;

танин 10%-ный водный раствор;

свинец уксуснокислый по ГОСТ 1027;

натрий сернокислый по ГОСТ 195, насыщенный водный раствор;

воду дистиллированную по ГОСТ 6709.

2.7.4.2. Проведение анализа

В стеклянный стаканчик взвешивают с погрешностью не более 0,001 г навеску измельченного на терке картофеля массой 5 г, переносят в мерную колбу вместимостью 100 см³ и прибавляют 50 см³ 1,124%-ного раствора соляной кислоты. Колбу помещают в сильно кипящую водяную баню ровно на 15 мин. В течение первых 3 мин содержимое колбы перемешивают. По истечении 15 мин колбу вынимают, приливают воды до общего объема 80-90 см³ и охлаждают под краном до 20°С. Для осаждения белков и осветления раствора прибавляют по 1 см³ 30%-ного раствора сернокислого цинка и 15%-ного раствора железистосинеродистого калия. После осаждения белков содержимое колбы доливают до метки водой, взбалтывают и фильтруют через складчатый фильтр. Первые порции фильтрата откидывают. Фильтрат поляризуют в трубке длиной 200 мм.

2.7.4.2.1. Определение поправки на растворимые углеводы

В стеклянный стаканчик взвешивают с погрешностью не более 0,0002 г навеску измельченного на терке картофеля массой 10 г, переносят в мерную колбу вместимостью 100 см³, приливают 75 см³ воды и при частом перемешивании оставляют на 30 мин. Затем прибавляют 5 см³ танина и смесь перемешивают, после этого добавляют 5 см³ уксуснокислого свинца и, снова перемешав смесь, добавляют ее до метки насыщенным раствором сернокислого натрия. Содержимое колбы взбалтывают и фильтруют. 50 см³ фильтрата переносят в мерную колбу вместимостью 100 см³, приливают 2,5 см³ 25%-ной соляной кислоты и помещают в кипящую водяную баню на 15 мин, затем охлаждают, прибавляют по 1 см³ 30%-ного раствора сернокислого цинка и 15%-ного раствора железистосинеродистого калия, доливают до метки водой, взбалтывают и фильтруют.

Для определения поправки на растворимые углеводы фильтрат поляризуют в трубке длиной 200 мм.

2.7.4-2.7.4.2.1. (Измененная редакция, Изм. N 3).

2.7.4.3. Обработка результатов

Массовую долю крахмала в картофеле (X) в процентах вычисляют по формуле

$$X=(P_1-P_2)\cdot 1,78$$
 или $X=(P_1-P_2)\cdot 5,12$,

- где P_1 показания поляриметра в основном опыте;
- P_2 показания поляриметра при определении поправки на растворимые углеводы;
- 1,78 коэффициент Эверса для картофельного крахмала при поляризации в сахариметре;
- 5,12 коэффициент Эверса для картофельного крахмала при поляризации в поляриметре с круговой шкалой.

Вычисление производят до второго десятичного знака с последующим округлением до первого десятичного знака.

За результат анализа принимают среднее арифметическое результатов двух определений, допускаемое расхождение между которыми не должно превышать 0,5%.

Если расхождение между результатами двух параллельных определений превышает 0,5%, проводят третье определение и за окончательный результат принимают среднее арифметическое результатов двух наиболее близких определений в пределах допускаемых расхождений.

ПРИЛОЖЕНИЕ (справочное). ОПИСАНИЕ ОСНОВНЫХ ПРИЗНАКОВ БОЛЕЗНЕЙ КЛУБНЕЙ КАРТОФЕЛЯ

ПРИЛОЖЕНИЕ Справочное

Железистая (ржавая) пятнистость

На разрезе клубня видны бурые или ржаво-коричневые твердые пятна различной величины и формы, которые не загнивают. Большая часть их располагается вблизи сосудистой системы.

В отличие от фитофтороза пятна не имеют выхода к периферии клубня.

Потемнение мякоти (непаразитарная серая пятнистость)

На мякоти клубня видны серые, черные или голубоватые пятна с нерезкими очертаниями, иногда такое потемнение распространяется по кольцу сосудистых пучков. Заболевание известно также под названием меланоз.

Дупловатость

Внутри клубня образуются пустоты различной конфигурации и величины. Полость дупла покрыта тонкой кожицей кремового или светло-коричневого цвета.

Парша обыкновенная (Streptomyces scabies (Thaxt) Waks. et Henr).

На поверхности клубня образуются язвы-коростинки неправильной формы и различной величины. На поврежденных местах образуется пробковый слой коричневого цвета.

Парша серебристая (Spondilocladium atrovirens Harz.)

На пораженных участках поверхности клубня имеются серовато-бурые, слегка вдавленные пятна, впоследствии приобретающие серебристый блеск из-за попадания воздуха под кожицу пятен. Иногда на пораженных местах имеются мелкие черные точечки или сажистый налет - это склероции или мицелий гриба-возбудителя.

Парша порошистая (Spongospora subterranea (Wallr.) Lag.)

На поверхности клубня имеются светлые пустулы в виде бородавок. В сухих условиях кожица наростов лопается, образуя язвы звездчатой формы, заполненные внутри порошкообразной черной массой, состоящей из спор гриба. При сильном поражении клубни могут деформироваться.

Ооспороз (Oospora pustulans Owen. et Wakef.)

На поверхности клубня около глазков и чечевичек образуются мелкие бугорки или пустулы. Часто они сливаются, образуя вдавленные кратерообразные пятна с бугорком посередине.

Мокрая гниль (Erwinia carotovora (Yan Hall), E. aroideae (Towns) Hall, E. atroseptica (van Hall) Yennison, Pseudomonas xanthochlora (Sch.) Stapp.)

Ткани клубня размягчаются и превращаются в слизистую гниющую массу с неприятным запахом. Окраска пораженных клубней сначала светлая, затем темно-бурая или розовая.

Кольцевая гниль (Corynebacterium sepedonicum Scapt. et Burkh.)

На продольном разрезе клубня в зоне сосудистых пучков видны размягченные желтые участки ткани, которые, разрастаясь, сливаются вместе, образуя кольцо гнили. С течением времени желтоватый цвет сменяется серым, затем бурым или черным. По сосудистой системе гниль распространяется на сердцевину клубня, которая целиком выгнивает. У пораженных клубней на кожуре появляются трещины. Скрытая форма поражения может проявиться в виде ямчатой гнили. При срезе кожуры видны округлые кремовые, светло-кремовые и светло-желтые пятна гнили.

Бурая бактериальная гниль (Pseudomonas solanacearum Bergey)

Поверхность кожуры клубня, начиная со столонной части, становится бурой, в месте прикрепления столона кожура размягчается.

На продольном разрезе клубня наблюдается размягчение сосудистого кольца и его побурение. Сердцевина постепенно разрушается, образуя покрытую слизью массу. Кожура при этом часто остается неповрежденной. При надавливании выделяется слизистая масса с неприятным запахом.

Сухая гниль (фомоэ, фузариоз, стеблевая нематода)

Пораженные участки клубня подсыхают, сморщиваются, мякоть превращается в сухую трухлявую массу различной окраски.

Фомоз - пуговичная гниль (Phoma solanicola Prill. et Dell)

На поверхности клубня вначале появляются небольшие круглые темные вдавленные пятна с отчетливой границей между больной и здоровой тканями. В дальнейшем пятно, углубляясь, превращается в язву с плотно натянутой кожурой на разрезе, через язву видна бледно-коричневая ткань, распространяющаяся внутрь клубня в виде конуса.

Фузариоз (Fusarium oxysporum Slecht, F. solani Bilai)

На поверхности клубня появляются серовато-бурые пятна. Покровная ткань немного сморщивается, опадает. В дальнейшем пораженные ткани подсыхают, образуя концентрические складки вокруг места первичного пятна.

На разрезе видна рыхлая, буроватого, затем черного цвета мякоть с пустотами, заполненными белым, желтоватым, красноватым пушистым мицелием гриба.

На поверхности клубня в местах поражения образуются подушечки спороношения такого же цвета. Клубень становится легким и твердым.

Стеблевая нематода (Ditylenchus dipsaci)

Клубень поражается в основном со столонного конца. В месте внедрения нематод имеется свинцово-серое, несколько вдавленное пятно, которое постепенно разрастается, кожура темнеет, отслаивается и растрескивается. В трещинах видна светло-коричневая, рыхлая, пораженная ткань. На границе пораженной и здоровой ткани имеется множество белых рыхлых пятен, в которых скапливается большое количество нематод. Пораженная ткань распространяется по периферии клубня, редко проникая вглубь.

В дальнейшем пятно, углубляясь, превращается в язву с плотно натянутой кожурой на разрезе, через язву видна бледно-коричневая ткань, распространяющаяся внутрь клубня в виде конуса.

Фитофтороз (Phytophthora infestans (Mont) De Bary)

На поверхности клубня твердые буровато-серые пятна, вдавленные внутрь ткани. На разрезе пораженная ткань ржаво-бурая, губчатая.

Болезнь распространяется внутрь клубня отдельными участками. При хранении такие клубни могут поражаться сапрофитными микроорганизмами, в результате чего они разрушаются из-за развития мокрых и сухих гнилей.

Подмороженные клубни

Сильно поврежденные клубни после оттаивания становятся мягкими, при легком надавливании из них вытекает сок, кожура легко отделяется от мякоти, которая на воздухе быстро краснеет, затем буреет и чернеет.

При поражении части клубня на границе поврежденной и здоровой части образуется пробковый слой темного цвета. При очистке кожуры поврежденных клубней видны пятна, линии и полосы розовато-коричневого цвета. Эти пятна могут проходить на различную глубину внутрь клубня.

При слабом поражении клубня на разрезе мякоти имеются точки и линии, расположенные по сосудистой системе.

Удушение клубней

Часть поверхности клубня размягчается, но пятна отсутствуют. Кожура клубня легко снимается. На разрезе клубня видна гнилая ткань в виде белой или розоватой рыхлой кашицеобразной массы со спиртовым запахом. Часто пораженная ткань бывает отделена от здоровой темной каймой.

Солнечные ожоги

На пораженных участках клубня образуется уплотненная ткань бурого цвета.

ПРИЛОЖЕНИЕ. (Введено дополнительно, Изм. N 3).

Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание Картофель, овощи, бахчевые культуры. Технические условия: Сб. ГОСТов. - М.: Стандартинформ, 2010